Stone-Kleene Relation Algebras
نویسنده
چکیده
We develop Stone-Kleene relation algebras, which expand Stone relation algebras with a Kleene star operation to describe reachability in graphs. We show that finite matrices over extended real numbers form an instance. These theories are being prepared for the Archive of Formal Proofs. Further documentation will be added.
منابع مشابه
Kleene and Stone Algebras
Boolean algebras are affine complete by a well-known result of G. Grätzer. Various generalizations of this result have been obtained. Among them, a characterization of affine complete Stone algebras having a smallest dense element was given by R. Beazer. In this paper, generalizations of Beazer’s result are presented for algebras abstracting simultaneously Kleene and Stone algebras.
متن کاملProgramming and automating mathematics in the Tarski-Kleene hierarchy
We present examples from a reference implementation of variants of Kleene algebras and Tarski’s relation algebras in the theorem proving environment Isabelle/HOL. For Kleene algebras we show how models can be programmed, including sets of traces and paths, languages, binary relations, max-plus and min-plus algebra, matrices, formal power series. For relation algebras we discuss primarily proof ...
متن کاملResiduated Kleene Algebras
We show that there is no finitely axiomatizable class of algebras that would serve as an analogue to Kozen’s class of Kleene algebras if we include the residuals of composition in the similarity type of relation algebras.
متن کاملCharacterizing determinacy in Kleene algebras
Elements of Kleene algebras can be used, among others, as abstractions of the inputoutput semantics of nondeterministic programs or as models for the association of pointers with their target objects. In the first case, one seeks to distinguish the subclass of elements that correspond to deterministic programs. In the second case one is only interested in functional correspondences, since it do...
متن کاملRelation Algebras, Idempotent Semirings and Generalized Bunched Implication Algebras
This paper investigates connections between algebraic structures that are common in theoretical computer science and algebraic logic. Idempotent semirings are the basis of Kleene algebras, relation algebras, residuated lattices and bunched implication algebras. Extending a result of Chajda and Länger, we show that involutive residuated lattices are determined by a pair of dually isomorphic idem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Archive of Formal Proofs
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017